


Cluster Analytics

Classify objects from a set into clusters

Objects in the same cluster are more similar to each other
than to those in other clusters.

Detect, reveal, and analyze hidden patterns



A Primary Exploratory Task

Data and text mining

Pattern recognition

Image analysis

Network analysis

Information retrieval

Bioinformatics



Fundamental TheoremOf Clustering

NothingWorks Always!



SoMany Choices
Hierarchical & agglomerative clustering
k-means and its many variations and derivatives
Nonnegative matrix factorization
Spectral and subspace clustering
Graph partitioning and min-cut techniques
PDDP and PCA based partitioning algorithms
Self organizing maps & neural network methods
Gaussian mixture models & generalizations
Nearest neighbor implementations
Hard vs. fuzzy
. . . more . . . and more . . . and more . . .



Static Data vs. Dynamic Data

Hidden patterns are more difficult define in static data

But most clustering algorithms are built for the analysis of
static data
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By “fish intellegence?”

Complicated system of PDE’s ?

Strictly at random?



Is It Relevant How The Fish Moves?

By “fish intellegence?”

Complicated system of PDE’s ?

Strictly at random?

Doesn’t Matter

As long as the spots on the fish stay attached to fish’s body

Spots move together and relatively faster to slower move-
ment of the background.
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moving by observing which data points move in concert rel-
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Dynamical Clustering

Somehow impart “motion” to static data to reveal clusters
moving by observing which data points move in concert rel-
ative to background noise.

The Strategy

Observe the evolution of a differentiated time-scale stochas-
tic process imposed on the static data.

How To Do It?

Reverse Simon–Ando process



Simon–Ando Theory
Herbert Simon (1916–2001)

Carnegie Mellon University

— Nobel Prize in economics in 1978

Albert Ando (1930–2002)

University of Pennsylvania

“Aggregation of variables in dynamic systems,” Econometrica, Vol. 29, No. 2 (Apr.,
1961), pp. 111-138.



The Goal Of Simon–Ando

Analyze long-term economic stability of a macro economy con-
taining closely coupled micro economies by analyzing (or ob-
serving) the evolution of the micro economies for a short period
of time.

Small example

— Nine industries

— Three closely coupled clusters

Cluster 1 = Manufacturing (steel, machine tools, heavy equipment)

Cluster 2 = Entertainment (movies, TV, books & magazines)

Cluster 3 = Beverage (sugar, water, packaging)
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Simon–AndoAnalysis
Modeled by a Markov chain

Individual industries are the states

Flow of capital between industries are the transitions

Transition flows are row normalized (row sums = 1)
— Pn⇥n row stochastic transition matrix
— Aperiodic Markov chain

k distinct micro economies (or clusters)
— There is a permutation such that P is nearly uncoupled

P =

2
664
P11 P12 . . . P1k

P21 P22 . . . P2k...
...

. . .
...

Pk1 Pk2 . . . Pkk

3
775 max

i
||Pi?||1 = ⇣ << 1



Uncoupling By Censoring

P =

2
4P11 P12 P13

P21 P22 P23

P31 P32 P33

3
5

j

i
pij

j

i
qijpij

(Uncensored) (Censored)

pij = P (i to j directly)
qij = P (reenter at j / leave from i)
sij = pij + qij = Censored probability

Censored Transition Matrices
S1 ⌘ P11 +Q1 S2 ⌘ P22 +Q2 S3 ⌘ P33 +Q3
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Censoring For i=1 P =

2
4P11 P12 P13

P21 P22 P23

P31 P32 P33

3
5

Censored probabilities

Q1 = [P12 P13 ]

I� P22 P23

P32 I� P33

��1 
P21

P31

�

= P1⇤
⇣
I� eP11

⌘�1
P⇤1

Censored transition matrix for censored chain

S1 = P11 +Q1 = P11 + P1⇤
⇣
I� eP11

⌘�1
P⇤1

In General, Si = Pii + Pi⇤
⇣
I� ePii

⌘�1
P⇤i

These are called stochastic complements
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Steady States
�i = steady-state distribution of ith censored chain

�i(0)

�i

=

=

initial prob dist

lim
t!1

�i(t)

�i(t)

�i

=

=

�i(t� 1)Si = t-step dist

�iSi

⇡ = steady-state distribution of global chain

⇡(0)

⇡

=

=

initial prob dist

lim
t!1

⇡(t)

⇡(t)

⇡

=

=

⇡(t� 1)P = t-step dist

⇡P

Coupling Theorem
⇡ = ( ⇠1�1 ⇠2�2 ⇠3�3 ), ⇠1, ⇠2, ⇠3 are “coupling” constants
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EqulibriumPhases
Short Run (a  t  b)

⇡(t) ⇡ ( ⇠1(t)�1 ⇠2(t)�2 ⇠3(t)�3 ) ⇠i(t) = k⇡i(0)k1 = ⌫i

Constants

Middle Run (t > b)

⇡(t) ⇡ ( ⇠1(t)�1 ⇠2(t)�2 ⇠3(t)�3 ) ⇠i(t) Varies With Time

For example, consider states i and j in cluster #1

⇡i(t)
⇡j(t)

⇡ ⇠1(t)[�1]i
⇠1(t)[�1]j

= [�1]i
[�1]j

= a constant (t > a)

Long Run ⇠i(t)! ⇠i (Constant) as t !1

⇡(t)! ⇡(1) = ( ⇠1�1 ⇠2�2 ⇠3�3 ) = ⇡ (Global Equlibrium)
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Simon–AndoConclusions
Short-run behavior reveals long-run behavior

Long-run equlibrium in a macro economy containing clusters
of micro economies is determined by the short-run evolution of
the micros.

Longer-term economic predictions can be made from shorter-
term observations.
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Reverse Simon–Ando

Long-run behavior reveals short-run behavior

⇡(1) = ⇡ = (⇡1 ⇡2 ⇡3 ) =) �i =
⇡i

k⇡ik1
⇡(a  t  b) ⇡ ( ⌫1�1 ⌫2�2 ⌫3�3 ) where ⌫i = k⇡i(0)k1

(Short-run stabilization)

And middle-run behavior

⇡(t > b) ⇡ ( ⇠1(t)�1 ⇠2(t)�2 ⇠3(t)�3 ) where ⇠i(t)! k⇡ik1
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Suppose that ⇡(1) is uniform

ni = # states in cluster i

⇡(1) = 1

n
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. . .↵2 |↵3
. . .↵3 )

⇡(t > b) ⇡ ( ⇠1(t)�1 ⇠2(t)�2 ⇠3(t)�3 )

= (�1(t). . .�1(t) |�2(t). . .�2(t) |�3(t). . .�3(t) ) �i(t) ! 1/n

Nearly equal entries in ⇡(t > a) belong to the same cluster
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Question
How Do We Force ⇡(1) To Be Uniform?

Answer
Simply force P to be doubly stochastic

— i.e., force all row sums and all column sums = 1

Sinkhorn–Knopp Procedure
Scale rows ! scale columns ! scale rows ! scale columns ! etc.

Converges (usually) — if not, it can be forced

Sinkhorn–Knopp preserves cluster integrity

Sinkhorn–Knopp preserves symmetry
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Putting Things Together

Step 1. Amn = [a1 |a2 | . . . |an ]
Raw Data

! Cnn (A Similarity Matrix)

cij = d(ai,aj) d(?, ?) = similarity metric of your choice

• Euclidean distance
• Minkowski norms
• Correlation
• Angular distance
• Gaussian metrics
• Hamming distance or variations
• Gabriel graph
• Delaunay triangulation
• Mean first passage time
• Ensemble (consensus) metrics
• etc

— Applications usually dictates choice

— e.g., text vs. numeric

— C = CT (symmetric matrix—usually)
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Step 2. Sinkhorn–Knopp Procedure
— Cnn ! Pnn (by successive row & column scaling)

— Similarity matrix (Symmetric) ! doubly stochastic (Symmetric)

Step 3. Initialize Markov Chain
— Pick ⇡(0) to be significantly different than uniform
— To see where state (or data point) #i clusters, pick

⇡(0) = ei = (0,0, . . ., 1
"
i
,0, . . .,0)

Step 4. Observe Markov Chain For A Few Steps
— ⇡(t + 1) = ⇡(t)P t = 1, 2, . . ., a (until short-run stabilization)

— Order entries in ⇡(t > a) to identify gaps
— Nearly equal entries belong to the same cluster



Leukemia Exmple
AML — Acute myeloid leukemia

(Most common in adults)
ALL — Acute lymphoblastic leukemia

(Most common in children)

In AML, myeloid stem cells develop into immature
abnormal white blood cells, myeloblasts, that don’t
become healthy white blood cells

In ALL, too many stem cells develop into lymphoblasts
that don’t mature into lymphocytes, the white blood cells
required to fight infections.



DNAMicroarray



Broad Institute (MIT/Harvard)
“Molecular classifcation of cancer: class discovery and class prediction by gene ex-
pression monitoring,” T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasen-
beek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloom-
feld, and E. S. Lander, Science, October 1999.

“Metagenes and molecular pattern discovery using matrix factorization,” J. P. Brunet, P.
Tamayo, T. Golub, J. Mesirov, Proceedings of the National Academy of Sciences, March,
2004.

38 cancer patients — gene expression data from bone marrow
samples — 5000 genes

Patient Diagonsis: #1–19 = ALL(B), #20–27 = ALL(T), #28–38 = ALM

Good test case since clusters are known

Similarity matrix was build by a consensus method
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P =

2
4P11 P12 P13
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σ(P)
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) σ(S 2) σ(S 3)

1-1 1-11-1

k = # clusters = # eigenvalues near � = 1 (determined by largest gap)



Eigenvalues For Leukemia Data
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Complete Dynamic Clustering Algorithm
Step 1. A (Raw data) ! C = CT (Similarity matrix)

cij = d(ai,aj) via similarity metric of your choice

Step 2. Sinkhorn–Knopp Scaling
C (Similarity matrix) ! P = PT (Doubly stochastic)

Step 3. Determine k (the number of clusters)
k = # eigenvalues of P closest to 1 (Determined by largest eigengap)

Step 4. Initialize Markov Chain
Pick ⇡(0) to be significantly different than uniform

Step 5. Observe The Chain For A Few Steps
⇡(t + 1) = ⇡(t)P t = 1, 2, . . ., a (Until short-run stabilization)

Order ⇡(t > a) and partition at the k � 1 largest gaps
States in each of these k segments define the k clusters
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Conclusion
Allows for dynamic visualization tools for cluster analysis

Allows the ability to select & analyze clusters in isolation

Allows tracking & analysis of selected pieces of data

Works well for determining the number of clusters

Several possibilities for variations & innovations

Remaining Questions

Scalability

Application dependency

Sensitivity to similarity metric

Effectiveness of application directly to raw data



Thanks For Your Attention!




